Skip to main content

Thermal Power Plant : Principle, Parts, Working, Advantages and Disadvantages

Basic Introduction or Principle: We all are aware with the term "Generator". A device which converts mechanical energy into electrical energy is known as generator. This generator makes rotate with the help of some kind of external energy. When this energy extract from the energy of steam, the plant is known as steam power plant.  A simple steam plant works on Rankine cycle. In the first step, water is feed into a boiler at a very high pressure by BFP (boiler feed pump). This high pressurized water is heated into a  boiler   which converts it into high pressurized super heated steam. This high energized steam passes through steam  turbine  (a mechanical device which converts flow energy of fluid into mechanical energy) and rotate it. Owing to extract full energy of steam, three stage turbines is used which is known as LPT (Low pressure turbine), IPT (intermediate pressure turbine) and HPT (High pressure turbine). The turbine shaft is connected to the generator rot

Basic Definitions Used in Engine Terminology

1. Top dead center (T.D.C.)
In a reciprocating engine the piston moves to and fro motion in the cylinder. When the piston moves upper direction in the cylinder, a point at which the piston comes to rest or change its direction known as top dead center. It is situated at top end of cylinder.

2. Bottom dead center (B.D.C.)
When the piston moves in downward direction, a point at which the piston come to rest or change its direction known as bottom dead center. It is situated in bottom side of cylinder.


3. Stroke (L)
The maximum distance travel by the piston in single direction is known as stroke. It is the distance between top dead center and bottom dead center.

4. Bore (b)
The inner diameter of cylinder known as bore of cylinder.

5. Maximum or total volume of cylinder (Vtotal)
It is the volume of cylinder when the piston is at bottom dead center. Generally, it is measure in centimeter cube (c.c.).

6. Minimum or clearance volume of cylinder (Vclearance)
It is the volume of cylinder when the piston is at top dead center.

7. Swept or displace volume (Vswept)
It is the volume which swept by the piston. The difference between total volume and clearance volume is known as swept volume.

Swept volume = Total volume - Clearance volume

8. Compression ratio
The ratio of maximum volume to minimum volume of cylinder is known as the compression ratio. It is 8 to 12 for spark ignition engine and 12 to 24 for compression ignition engine.

Compression ratio = Total volume / Clearance volume

9. Ignition delay
It is the time interval between the ignition start (spark plug start in S.I. engine and inject fuel in C.I. engine) and the actual combustion starts.

10. Stroke bore ratio
Stroke bore ratio is the ratio of bore (diameter of cylinder) to length of stroke. It is generally equal to one for small engine and less than one for large engine.

Stroke bore ratio = inner diameter of cylinder / length of stroke

11. Mean effective pressure
The average pressure acting upon the piston is known as mean effective pressure. It is given by the ratio of the work done by the engine to the total volume of engine.

Mean effective pressure = Work done by engine / Total volume of cylinder 

Comments

Popular posts from this blog

New imaging technique could detect acoustically 'invisible' cracks

The next generation of aircraft could be thinner and lighter thanks to the development of a new imaging technique that could detect damage previously invisible to acoustic imaging systems. The nonlinear acoustic technique developed by researchers from the University of Bristol's Ultrasonics and Non-destructive Testing (NDT) research group is published in the current issue of  Physical Review Letters  together with an accompanying article in  Physics . It has long been understood that acoustic nonlinearity is sensitive to many physical properties including material microstructure and mechanical damage. The lack of effective imaging has, however, held back the use of this important method. Currently engineers are able to produce images of the interior of components using ultrasound, but can only detect large problems such as cracks. This is like detecting only broken bones in a medical environment. Imaging of acoustic nonlinearity is achieved by exploiting differences in

Main Parts of an Internal Combustion Engine

Today we will learn about main parts of an engine. An internal combustion engine is the engine in which combustion (burning of fuel) takes place inside the cylinder of engine. By burning of the fuel high temperature and pressure force generates. This pressure force use to move the vehicle or rotate wheels by use of some mechanism. In an engine many parts work together and achieve the goal of converting chemical energy of fuel into mechanical energy. These parts are bolted together and the combination of all these parts is known as engine. Today I am going to tell you about these parts and how they work so you can know the basic of automobile engine. Main Parts of an Internal Combustion Engine: 1. Cylinder block Cylinder is the main body of IC engine. Cylinder is a part in which the intake of fuel, compression of fuel and burning of fuel take place. The main function of cylinder is to guide the piston. It is in direct contact with the products of combustion so it must b

Automated Portable Hammering Machine

Automated Portable Hammering Machine Hammering is the most widely used industrial as well as construction activity. Hammering or screws, metal sheets, parts etc requires a lot of time and effort. So here we propose an automated hammering system that allows for fully automatic hammering process. This allows for accurate, fast and automated hammering wherever and whenever needed using a 12V battery. The person just needs to insert workpeice and start the hammering machine. This machine can be used for automatic hammering work as and when needed. We here use a dc motor in order to move the hammer. The DC motor consists of a pulley attached to it which is connected to a larger pulley for efficient power transfer and to increase torque. This large pulley is connected to a shaft that has a connecting rod attached to it. This rod is used to achieve lateral motion from the spinning shaft. We now connect the other end of hammer to this connecting rod through a mid swinging arrangement in